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1. Dscription of Data and Goals of Analyui

This report describes the analysis of a particular dataset. In this section we

describe the dataset, and the goals of the analysis. In section 2 we look at some

previous work done by others in analyzing this and other similar datasets. In

the remaining sections we describe the steps in our data analysis, along with

some theoretical justification of several novel techniques.

The dataset is a large univariate time series. It is a sample of underwater

noise observed on 23-24 April 1980 from a pack ice camp in the Arctic Ocean,

located at 86 degrees north latitude, 25 degrees west longtitude. A broadband,

omnidirectional hydrophone was suspended to a depth of 91 meters in 4000

meter deep water, and the underwater acoustic noise was recorded on an analog

device. Later, this noise was filtered by a lowpass filter with cutoff around 2500

Hz, and then digitized at 10 kHz, ie, the analog signal was sampled at the rate of

10,000 times per second, and each of these sampled values was rounded to the

nearest of a finite set of numbers. Our dataset is this digitized record during

the period approximately 11:30-11:40 pm on the 23rd. Ten minutes at 10 kHz

yields six million numbers; we actually have 6,150,144 numbers which is slightly

longer than ten minutes. This conveniently works out to 6006 groups of 1024

numbers each.

Such a large, single time series presents both problems and opportunities;

this is perhaps a general comment relevant to the analysis of large datasets.

The main problem is that the statistics we usually compute such as moments,

autocoiariences and Fourier transforms, are extremely inconvenient to com-

pute for large amounts of data, and may even make little sense. Just handling

the data presents logistic problems. On the other hand, we can do things which

are impossible or impractical for smaller datasets. Many such techniques will be

described in the following pages and perhaps what makes these techniques

!.3
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attractive is the general idea that by blocking the data into contiguous chunks

we can imagine that we have an ensemble of time series. This contrasts with the

usual case in time series analysis in which we only have one time series from a

conceptual ensemble of possible time series.

The particular dataset analyzed here appears to exhibit several different

sorts of non-stationarity and non-Gaussianity. Our main goal in analyzing this

so-called 'ice noise' is to try to characterize it. We wish to find a model which

adequately describes the noise. This characterization could be used to enhance

knowledge about underwater acoustics near ice, and might also allow more A
efficient detection of signals in the presence of such noise.

We have taken a data-oriented approach in our analysis. We begin by pic-

turing the data in certain simple ways and then letting these pictures guide our

further analysis. The end result is an approximate theoretical model, suggested

to us purely by consideration of the data itself. It is to be expected that

detailed knowledge of underwater acoustics under ice would lead to at least

some enhancement of our model. This point will be taken up later in greater

detail.

Z Previous Work

This dataset has been looked at several times before. In particular, Roger

Dwyer (!981, 1982), has done considerable work in which he investigates running

moments in the time domain and does analysis in the frequency domain. He

concludes that the noise is both non-Gaussian and nonstationary. In particular

he sees very large sample kurtoses, which are attributed to impulsive noise, and

notes the presence of pronounced tonals in the spectrum estimates which are

hypothesized to be squeaks due to ice dynamics. Similar results have been

reported by Milne and Ganton (1964) in other data sets.
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we confirm the presence of such impulsive noise and such tonals, but

believe that the remainder of the under ice noise is essentially Gaussian in

nature. This is explored in Section 4.

& Data Blocking and Some Rmple Traces

Many of the commonly used techniques in time series rest on the twin

assumptions of stationarity and Gaussianity. The largeness of our dataset gives

us the opportunity to examine these assumptions for validity. Since computing S

some of the traditional statistics such as moments, quantiles and Fourier

transforms is impractical for six million numbers, we are naturally led to the

idea of blocking the data. To do this we group consecutive observations into to.

groups of size N, say, where, if convenient, N may be taken as a divisor of T, the

total number of data points. By computing, for example, moments for each of

these R = TIN records, we may ascertain whether stationarity and Gaussianity

are reasonable assumptions.

3. 1. Choosing a Block Size

From physical considerations, there is no natural record size N, for our ten

minutes of acoustic noise, and we are thus free to choo3e it as we please. In

most of our analysis we have used N = 1024 for the following reasons:

(i) Dwyer has used this value in his analyses, so our work and his may be com-

pared at appropriate points.

(ii) A power of two is convenient for the computation of discrete Fourier

transforms via the FF1 algorithm.

(iii) N should be greater than about 100 in order to achieve satisfactory stan-

dard errors for record statistics, and less than about 10,000 in order that

the computations do not get too cumbersome. Our chosen N is roughly the

geometric mean of these two extremes.
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(iv) N should be sufficiently small that within a single record the data is roughly

stationary. 1024 seems empirically to satisfy this condition, though more

rigorous testing would be possible.

(v) N should be at least 512 since this blocksize corresponds to .05 seconds of

data so that the frequency of blocks is 20 Hz, and signals of 10 Hz or less

would appear as a trend from block to block. Such frequencies are unlikely

to be detected with the recording equipment used, though with a smaller

biocksize, there might start to be block to block trends.

Thus, our first step is to break the data into R = 6006 records each of size

N = 1024 numbers.

3. Running Means and Variances

Our first plots replicate those in Dwyer (1981), page 8. Denote the jth

record by Zx.o . ,....._, !orj = 1fo .. R, with N : 1024 and R = 8006. Thus the

entire time series is just the numbers

|I- , ... ,, o ..... ,X60 06, n. CC 231.

We compute for the jth record the mean ,

'F- 1024j.

and the sample central moments

v i--1-2 (x1., - m). k = 2,3,4.

Each of these sample moments is computed for records which do not con-

sist of Independent observations, but in fact are highly correlated. Thus the

sample moments will be biased estimates of the true moments. Notice that we

are tacitly assuming that the data is relatively stationary within records, so that

it makes sense to speak of the theoretical moments of a record. As an example

of this bias, consider the sample variance in the presence of positive serial
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correlation. In this case sample variance would estimate the variance with a
0

negative bias, i.e. it would underestimate the true variance. We choose to ignore

the effects of bias in what follows because the sample size is relatively large

(1024) and because the records tend to have sample autocorrelation functions "@

which drop off fairly rapidly

The actual center and variability of the raw data are artifacts of the digiti-

zation method used on the original analog signal. Thus, we denote by mi the

sample average of the entire time series, and by m (2) the sample variance of the

time series, and plot in Exhibits 3.1 and 3.2 the values of (Mrnj -m (M(2))1 / 2

and mJ.2)/m(2), as functions of j.

It is clear from Exhibit 3.1 that the data seem trendless, and that except

for records 2220, 2248 and 3236, we are just seeing sample fluctuations in the

sample average. This trendlessness is to be expected, since the hydrophone was

measuring longtitudinal pressure waves which must clearly average out to zero

in any length of time relatively long compared to the period of the longest wave

present. (See reason (v), above, for the use of a blocksize of 1024.)

The sample variance trace, Exhibit 3.2 clearly demonstrates that over the

time period of the data there is marked non-stationarity. In fact it would appear

that even in the short run there is no stationarity, with the possible excepLion of

a few sections of the data where the samplc variance trace is relatively flat.

Sample varidnce is a measure of volume or signal energy, and thus it appears

that the volume of the noise is fluctuating. In later analysis we will show that

much of this variability in the variance can be attributed to the momentary

presence of strong sinusoidal components superimposed upon relatively stable

noise, and that the variance fluctuation is, in fact, not being caused by changes

in the volume of this 'background' noise.
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3. Running Skews and Kurtoses

Exhibits 3.3 and 3.4 are plots of the traces of the sample skew

MIS)

and the sample kurtosis

Kj (MJZ))2

for each of the 6006 records.

The skew and kurtosis for any Gaussian distribution are 0 and 3. Exhibits

3.3 and 3.4 show skews and kurtoses which are usually reasonable for a Gaussian

distribution, with occasional dramatic deviations from the baselines of 0 and 3.

In looking at these two plots together, it is striking that the large deviations in

skew and kurtosis appear to occur together much of the time.

3.4. Explana n for Large Skews and Kurtoses

To illustrate this point the absolute skews and the kurtoses were each

sorted, and the 50 largest selected from each list. Those records which are

common to the two lists are sorted by kurtosis in Table I below. Nearly half of

the spikes in the skew and kurtosis traces occur for the same records among

the largest 50 of each. In addition, the largest 12 absolute skews and the largest

11 kurtoses appear on this list. Thus large absolute skew and large kurtosis are

highly correlated. Exhibit 3.5 is a time series plot of the data for record 1362,

which has the second highest kurtosis and the largest absolute skew. The rea-

son for the large moments is immediately clear, viz, the short burst of very

large observations around observation number 695. The duration of the burst is

about 10 observations which in real time is aboi-t I millise ond. This behavior is,

in fact, characteristic of records with lari ew a large kurtosis, and

ac counts f or large kurtose s at le ast as small as 6, as illustrated by Exhibit 3. S. a •-,
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time series plot of record 2238. This record has the 50th largest kurtosis (5.73)

and a relatively small skew (.39).

Table 1
Largest Skews and Kurtoses "'0

Record Kurtosis Skew
2066 29.51 -1.57
1382 28.17 -3.12
4947 27.91 -2.55
1487 24.15 0.51
2220 22.97 -2.72
2248 18.49 -2.92

41 17.67 -0.68
3236 17.07 -2.76

- 5776 14.95 0.62
2236 14.54 -1.39
2177 13.41 -1.05
1281 12.42 -0.70
2041 11.25 -0.89
2246 10.24 1.02
4902 10.00 -1.04
5546 9.99 -0.67
5557 9.55 -0.84
5705 9.25 -0.64
4808 8.05 -0.52
2042 7.43 o.32
1938 7.10 -0.55
2724 6.59 -0.63
4836 6.12 -0.66 .e.

Kurtosis is classically used to measure "fatness" in the tails of a distribution

and these bursts appears to be the major factor contributing to the high K,. If,

for sample 1362, we excise the points from 689 to 699 and recalculate kurtosis,

K1362 drops from 28.17 to 3.24. Skew is also significantly affected by these

bursts; for sample 1362, the same excision causes S136 to go from -3.12 to

0.039.

As stated previously, kurtosis measures "fatness" in the tails of the distri-

buton. However, a large kurtosis does not tell us how far from the center of the

distribution we must go before we see "fat" tails. We wished to r-heck that the

observed high sample kurtoses were being caused by bursts (i.e. the tails are

- - "I- - ' t " " ' " - =| - " d= t



ii"fat" only far from the center). For we expect that the body of the distribution .

of the numnbers from a record will remain unchanged by a burst, but that the few

largest and smallest values in the sample will be much larger (or smaller,

respectively). We devised a check by computing the statistic:

F.=Y./H

where Y7., is the difference between the second highest and second lowest obser-

vations and H,~ is the interquartile range.

This statistic is an analog of the sample kurtosis, in that it measures how

long the tails are (Y,,) relative f~o the spread of the distribution (H,,). Sample

kurtosis achieves this effect by dividing the average fourth power of deviations

from the mean by the average second power. The latter measures spread, while

the former causes greater magnification of those observations which deviate

further from the mean. The problem with using kurtosis as a measure of the

length of the tails of a distribution is that kurtosis can also be large for a distri-

bution which is peaked, i.e. a distribution whose tails are fat relative to the

center, but whose extreme tails are not particularly large. F,, will only be large

in the presence of large extreme tails in the distribution and can therefore be

used to check our belief that the observed large sample kurtoses for the ice

noise are due to very high amplitude bursts and not merely to a peaked distri-

bution.

trace of F,, limited to between 2 and 7, and the trace of 14, limited to between Fo2 oprsno h w esrsseEhbt37 hc lutae h

and 5. The values were so limited in order that the behaviour of the majority of

the values was not swamped by the few large values in each trace. It is clear

that the two traces are virtually the same in character. The correlation between

U the logs of the measures is .93. (The reason for taking logs is to reduce the

effect the few large values have on the correlation coefficient.) The group of

.
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records with the 127 highest kurtoses and the group of records with the 127 @0

highest Fn's share 1 17 members in common! Kurtosis and F,, measure essen-

tially the same thing. and therefore kurtosis is large precisely because of the

stray values represented by bursts.

A fair question to ask is the following: If we wish to automatically detect

bursts in this noise, how large should the kurtosis of a record be before we flag

such a burst? We settled on 4, after considering a portion of the data analyzed

in section 4. 1.1. In this portion of the data all but three kurtoses are under 3.9;

the remaining three are all much larger. Theoretical considerations also make

this a generous upper bound - see section 4.1.1 for a discussion of simulation

results.

It would appear, then, that all the large kurtosis records have a common

cause: a transient large amplitude signal which disappears very rapidly corn-

pared to the time scale of each record. The erratic behavior of this transient

seems to account for the large skew values often observed along with large kur-

toses. Because K. demarcates these records, we have a simple method for iden-

tifying the records containing bursts. .

3.5. Other Behavior in the Skews and Kurtoses

Since these bursts are so large, they obscure other behavior in the moment

traces for skew and kurtosis in Exhibits 3.3 and 3.4. In order to see this other

behavior, we repiot in Exhibit 3.8 the skew and kurtosis traces in the regions of

the 0 and 3 baselines. The variance trace is also replotted in this Exhibit. This •

Exhibit contain most of the skews and kurtoses; in fact 99.6% of the skews and

98.8' of the kurtoses. In the skew plot, there is a region of relatively large nega-

tive skews from about 300 to 1400 and two segments where the skews seem to be

compressed toward the origin: 1800-1900 and 3300-4300 In the kurtosis plot

there seem to be three regions where the kurtosis drops below 3: 1000-1400,
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1600-1900 and 3300-4300. These regions also seem to form natural boundaries

on the variance plot. The coincidences of these regions bears investigation: we

will suggest a model in the next section which appears to account for these

effects. To this end, we divide and name the data as follows: _4

Region Records Variance Skew Kurtosis

1 1-300 normal normal normal
2 301-1000 high stretched normal
3 1001-1400 high stretched low4 1401-1600 normal normal normal

5 1601-1900 high squeezed low
6 1901.-3300 normal normal normal
7 3301-4300 high squeezed low
8 4301-6006 normal normal normal

4. The Basic Model. .4.

On inspection of the variance trace, it is clear that the volume of the noise

appears relatively constant over fairly long stretches of time. One can see this

on casual inspection of the variance trace in Exhibit 3.2, for record numbers

1900-3300 or 4300-6006 (regions 6 and 8). In the regions where the variance is

fluctuating much more wildly, many of the log periodograms of single records

have very marked peaks at a few frequencies. Further, for these log periodo- "

grams, on ignoring peaks "by eye", the underlying periodogram looks very much

the same from record to record This suggests that the ice noise might be well

modeied by a continuous spectrum, stationary series with added discrete

sinusoids of high power whose frequencies change from record to record. An

added complexity would be to allow the continuous portion to vary slowly

through time. We shall call such discrete sinusoids tones, or tonals. Mathemati- :..

cally, let P, (w) be the observed periodogran of record n; W ranges through the

Fourier frequencies. Then the fr-rmer hypothesis is essentially one of a mixed

spectrum:

= (W) + + e. ()

'_.



The first term on the right is the continuous portion represented by a spectral

density function h(w). The sum represents discrete tones at frequencies

ql*. , . for some small integer I, and presents the effect of computing a

periodogram as a sum Fejer kernels F1 .... ,F weighted by the amplitudes 0

A,.. AM of the tones. If we allow variation of the continuous part, the model

becomes:

P6( ) h ( ) + t c.-F(cj-,.) + et. ) (2)

where the h, may be slowly varying with n in a complex fashion. The tones are

allowed to be quite arbitrary from record to record; the only constraint is that

there be no more than I of them at any one time. If we assume in both

hypotheses that the part of the process with spectrum h(.) (or 14,(w), in 11'odel

(2)) is stationary Gaussian, then the r,(c) are independent, and exponentially

distributed with mean 0 and variance h (w). (Note that the c,, () are exponential

because P, is the raw periodogram; it is the sum of the squares of two indepen-

dent normals - the real and imaginary parts of the discrete Fourier transform).

We shall call the component of the noise with spectral density h the backgrountd

noise.

We shall further assume (as is suggested by the log periodograms that we

looked at) that h (or A) is fairly smooth. In particular, we assume that any

peaks in h are much wider than the width of the peaks of tones appearing in the

periodogram.

Both of these models have some flaws that are apparent on casual inspec-

tion. First, the high frequency part of all the raw periodograms are very flat

(e.g. Exhibit 4.1 pictures a periodogram from record 4601) - the error distribu-

tion t (w) is obviously only poorly modeled here. This high frequency part of the -.

spectrum has such low power that modifying any single observation can change

the high frequency portion of the periodogram by several orders of magnitude.

* .
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We should recall that the data was filtered by a low-pass filter with a cut-off at

2500 Hz, so it is not surprising the models fail in this region, We shall thus

ignore the frequencies above 2500 Hz. Second, Model (:) appears dlawed in that

even in the absence of tones h seems to vary systematically over time -- look at

the variance trace for records 4430-4450. That there are no discrete frequen-

cies for these records will be further explored in the section on background

noise, Section 4.1.1. It is clear that any such model as (1) can be at best only

approximately true.

There is a third flaw with Model (1) In some of the records very large tran-

sient pressure changes are obvious, as discussed in Section 3.4. These transient

bursts are on the order of 1/100 of a second or less. They seem to occur in only

a small fraction of the records. We could modify Model (1) or (2) to accommo-

date these bursts by adding a "burst" to the process at random intervals, but as

records with bursts can be identified as discussed in section 3.4 we shall assume

that conclusions about Model (1) or (2) apply to these records 'except for

bursts), and we shall base our study of Model (1) on records without these

bursts. We do not attempt to model bursts in this analysis.

Our aim is to check whether Model (i) is a reasonable description of the

data, and this will be done in the following sections.

4.1. Confirmation of Model (1)

4.1.1. Gaussziamty in the Background Noise.

We can reasonably assume there are no tones in areas where the variance

trace is fiat. We thus wish to check whether the noise in these regions is station-

ary Gaussian; this would be predicted by Model (i). In order to substantiate this

assumption we considered the sequence of records 4601-4901. A log periodo-

gram of one of these (4601) is given in Exhibit 4.1. We ignore three of these
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records, viz 4692, 4710 and 4808, where large kurtoses of 6.38, 11 36 and 8.05

flagged bursts in the noise. Otherwise, all the moment traces are very flat, with

the variance trace ranging between .378 and .764. The observed kurtoses

remain close to three with an average of 3.02 and a standard deviation of .233.

In a simulation of 10,000 sample kurtoses from records of 1024 simulated

independent Normals we obtained an average kurtosis of 2.995, with a standard

deviation of .152; this is not strictly comparable since we have dependence in

the ice noise, but it suggests that the ice data kurtoses are in fact what one

might expect under an assumption of Gaussianity. We get very similar results

for skew; the ice data skews for these records average .017 with a standard devi-

ation of .125, to be compared with an average or -.00007, and a standard devia-

tion of .0785 for the simulated data. This is encouraging evidence that records

4601 to 490. may be Gaussian noise.

We substantiate this further by considering the actual distribution of the

data for part of this region. However, the difficulty of handling so many

numbers at once means we shall do this for only a small proportion of these

numbers. The technique we use is to get a large independent sample by taking

every 6'th number in this region. This is reasonable since autocorrelations tend

to fluctuate around zero by lag 8 or so. This gives us 298x16, or 4768 numbers

which should behave as an independent identically distributed sample of Gaus-

sian random variables. These numbers had a kurtosis of 3.1:67 and a skew of

.058 respectively. A test against the hypothesis of kurtosis exactly 3 would

reject at the 2% level; however a similar test for zero skew is only significant at

about the 10% level. Considering how sensitive sample kurtosis is to tails larger

than expected from normality, this result is remarkably close to the normal

theory prediction. ,

QQ plots provide a very good qualitative measure of Gaussianity- deviations
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from the expected straight line are easy to see. This plot is shown in Exhibit 4.2.

Qualitatively, the fit to a straight line seems excellent. Quantitatively, we can

test this fit. This test is equivalent to a Kolmogorov-Smirnov test of whether the

distribution is Gaussian and only rejects the hypothesis that the distribution is

Gaussian at a significance level of greater than 20%. Thus the subsample of 4768

points passes this test also. A histogram of the subsample with a superimposed

exact normal curve is shown in Exhibit 4.3. This picture also qualitatively

confirms the hypothesis of Gaussianness.

We conclude that the assumption of a Gaussian distribution for this stretch

of the data appears well substantiated, except for three records containing

bursts. It thus seems a reasonable hypothesis that the background noise

remains Gaussian, even in the high variance regions, especially if we can demon-

strate that the background noise keeps much the same power. This is one of the

conclusions in the next section.

4.1.2. Existence and Identification of Tones.

In the trace of record variances, there are several high variance regions:

300-1400, 1600-1900 and 3300-4300 (regions 2, 3, 5 and 7). Minor fluctuations

are apparent in regions 2600-2800, and perhaps 5000-5400.

A reasonably typical log periodogram (smoothed) of a group of these

records (3508-3512) is pictured in Exhibit 4.4. Notice there is an obvious double

spike at about 1250 Hz and a possible harmonic of these spikes at 2500 Hz. So

tones occur some of the time. Inspection of periodograrns in the first group V

(300-1300) reveal a more complicated structure (e.g. see Exhibit 4.5, record

730), but we suspect that the high variance records observed in this group have

the same cause. We shall treat this group separately, later in this section.

We first note one possible consequence of Model (1). The addition of a
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discrete tone adds a sinusoidal component to the observed data. If the tone has

large power compared to the background noise, then the distribution of

observed series will be similar to the distribution obtained by randomly sam-

pling X from a distribution with distribution function G, where

G(z) = -L+L 24rcsin z

The kurtosis of this distribution is 1.5. It is to be expected that the addition of a

small number of tones with high power will have much the same effect, namely

lowering the observed kurtosis to less than 3. This need not necessarily be true;

if there are harmonics with power close to that of the fundamental tone, the

kurtosis may vary over a range, including values larger than 3. 9

This suggests that a comparison of low kurtosis records with their

corresponding variances might be revealing. These plots (Exhibit 3.8 and Exhi-

bit 3.2) clearly pick out the regions mentioned above, except for 5300-5500 and

perhaps 2600-2800. The regions 1600-1900 and 3300-4300 are particularly strik-

ing, with almcst no kurtoses greater than three. The case of few tones, with few

harmonics seems to be true here. However, the region 300-1300 retains many

records with kurtoses greater than 3'.

*Note that this does not prove Model (1), even in the regions of low kurtosis.

Strengthening the case for Model (I) requires a demonstration that the back- L

* ground noise is not varying, and that larger kurtoses in the 300-1300 record

number region are actually due to tones with many harmonics, and not to other

reasons.

It is certainly not unreasonable to expect the background noise to change

at the same time as we observe mixtures of discrete frequencies (a failure of

Model (1)). But, as discussed in the beginning of Section 4, the background A

noise appears very constant with virtually no change in power for long record

stretches.
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To check this we wished to find the power due to the tones and remove it,

leaving only the power due to the background noise. We did this by smoothing

the periodogram in such a way as to remove the influence of tones at or around

discrete frequencies while preserving the overall shape of the periodogram.

Since the total variance or power of a process is just the area under the periodo-

gram, we could then compute the "residual variance" of the part of the noise

modelled by h by taking the area under the smoothed periodogram. Such a

smoothing procedure should have the property that it preserves the shape of

periodograms from records with no apparent spikes due to tones. Classical

smoothing methods are not applicable, as they merely average the spikes at

discrete frequencies into the neighboring frequencies. In our circumstance,

where the variance attributable to a tone is between two or three times the vari-

ance at all other frequencies, classical smoothing will clearly produce a highly

biased estimate of the power due to h,."

The usual method of removing tones is to use complex demodulation to

identify the frequency at which the tone occurs, and remove that frequency with

some sort of average of surrounding frequencies. The major problem with this

approach is that it does not lend itself well to automation, for it requires

automatic identification of the frequencies at which tones occur. Alternatively,

one can attempt to use some sort of sequential testing procedure like the P(X)

test Priestley (1981) advocates, and then remove the peaks. A double windowing

technique like that suggested by Hannan (1961), is also a possibility. All these

approaches require considerable work which is not easy to automate.

Some sort of non-linear smoother seems to answer these problems. A non-

linear smoother will produce a biased estimate of h, but under the assumption

of sufficiently smooth h, and Gaussianity in the background noise, this bias can

be adjusted for reasonably well. The smoother we chose to use was that of a
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(2L=m+1) point running median. Denote this smoother by Smn. Then the value of

the smoothed periodogram at Fourier frequency wi = 2e/N is:

SmP(wt) = median P(w.)j
t-mtjsi +M

We need an endpoint rule: we chose to simply left extend P for values of igm.r;

similarly for right extension. One of the virtues of this smoother is that it gives

the same smooth regardless of whether one operates on the raw periodogram

and takes logs, or operates with the log periodogram, since log is a monotone

transformation.

Intuitively, this smoother will remove any narrow spikes in the periodo-

gram. As an estimator of h it has several sources of bias. Firstly, it will smooth

out peaks and troughs in h. That this bias is kept small will depend on h being

sufficiently smooth in relation to the "peakiness" of the spikes in the periodo-

gram due to tones. Secondly, even if h is quite smooth, SmP will have a con-

sistent bias due to the fact that the median of the exponential distribution is

log(2) rather than 1. This can easily be adjusted for. Thirdly, it will fail if there

are too many spikes too close together in the periodogram. In this case it is

unclear how to mechanize a procedure for tone removal -- this appears to be a

problem in the 300-1300 group, as discussed a little later.

The major theoretical justification for using Sm can be found in Theorem

of Appendix A, which states that, under mild conditions on JL and m,

Sm(PN(w))/1og(2) converges to h(,) uniformly in probability. Further, uniform

convergence to h in probability implies that the residual variance given by

SN-I
- S,,(P(c.)) -. f( =) var(X) inprob.

where X is the Gaussian part of the time series. (For an exact statement, see

Corollary 1 in Appendix A).

We chose m =25. This removes the discrete spikes almost totally, and, since

* ' . " . . - .... . . . . .. '11 I 11 ~ . I lll ,l l ll..



h looks locally smooth, the residual variance should not have too much bias in

it. Model (1) predicts that the residual variance trace should be constant. We

calculated this residual variance for each record and the result of our pro-

cedure can be seen in Exhibit 4.6, where the original sample variance trace is

plotted above the residual variance trace. (All records containing suspected

bursts, i.e. those with sample kurtoses bigger than 4. are not plotted - our

smoothing procedure can only handle tones, not bursts.) The procedure seems

to do a reasonable job of normalizing the variance trace everywhere except for

the region of records 300-1,000. That these records still fit into the framework of

Model (1) remains to be shown. It is clear though, that Model (1) is only approxi-

mately true elsewhere.

The region 300-1000 is anomalous in other ways. The kurtoses are not con-

sistently low. An inspection of the skew trace, with skew values limited to

between +.8 and -.6 (Exhibit 3.8) clearly indicates that this region is qualita-

tively different from the region 3300-4300, where skew appears to decrease in

absolute value. Record 730 is displayed in Exhibit 4_.5, and clearly shows a

strong non-sinusoidal but periodic component. The periodogram of this record

shows the fundamental at about 240 Hz and six or seven harmonics, five of which

have about the same power. The running median smoother cannot deal with this

case, as the Fejer kernels about each peak leak substantial amounts of power

which reinforce each other, at least for the length of running median we chose.

It is obvious that for a sample length of 1024, no running median smoother will

work well in this case. Other periodograms we looked at have a yet more com-

plex structure with two or three fundamentals apparent, together with their har-

monics.

We believe that Model (1) is still valid for the whole region, but this is on -9

purely observational grounds - the periodograms we considered look like they

'.9}-
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retain the same underlying structure. Tbis remains an area where we need to

do more rigorous research.

There remains open the question of how one might modeiL the frequencies

and amplitudes of these tones, as a random process. T'his is not an easy task, as

it seems apparent that the tones at different frequencies are connected with

each other -- to wit, it is clear that we sometimes observe a fundamental with its

harmonics. Any reasonable model must take such structure into account. Con-

sideration of the physics r:f underwater acoustics and of acoustic energy

released in the fracture of solids might suggest some avenues of approach.

That these tones have a complex structure even without considering the

dependence structure at one time is illustrated by the fact that even in periods

of a second or so, the tone may wander in both frequency and in amplitude. A

plot of the spikes in the estimated spectra of a series of records 1770-1830 (see

Exhibit 4.7) illustrates this point. This plot was made by first computing a spec-

trurm estimate for each of the records. The estimate used was a length five

Daniell window applied to the periodogram. Then the difference between this

estimate and a smoothed version 'smoothed using running medians of length 41)

was computed in order to leave only the spikes. The plot shows, for each record,

only the upper 15% of these differences.

In the early records, 1770 to 1790 or so, there is quite a strong tone at

around 1100 or :,200 Hz, which appears to split into two 'ones; one staying at the

same frequency until late in the sequence, the other wandering up to about 150C.
.0

Hz. The two tones seem to be merging again by record 1830. There is also an

apparent harmonic at 220D-2300 Hz, which increases in frequency just as its fun-

damental does.



- 20 -

5. Bimmary

This report has modeled the undersea noise with a model suggested by an

exploration of the dataset itself. The model consists of three parts; the first

part is a relatively stable Gaussian process (called the background noise in this0

report) which is assumed to have a smooth continuous spectrum. Superimposed

on this Gaussian process are a small number of random tones. The frequencies

amplitudes of these tones are changing over time and are sometimes absent

entirely. The third component in the model is the appearance of sporadic,

extremely transient, high intensity bursts of impulsive sound energy (bursts).

These bursts are quite rare in the data we examined.

The model we suggest is incomplete in several respects. It is only approxi-

mate, but we believe this is not a problem. This -belief could best be tested by

trying out the model with another dataset. The model is unproven in some

regions of the data, particularly where a large number of tones are difficult to

distinguish from the background Gaussian noise.I
There are several areas remaining open for investigation. One such area isAL

in further modeling. We do not specifically estimate the parameters associated

with the Gaussian process. In addition, we do not attempt to model any proba-

bilistic process for the impulsive noise bursts, nor do we attempt to model the

tones by a probability model. Trying to model the bursts, perhaps as Poisson

events, may be fruitful. The problems associated with modeling the tones

appear more difficult. For one thing, we cannot always dissect out the tones, as

mentioned earlier, and for another, the tones probably have a complex struc-

ture dependent on the physics of acoustic energy released due cracking and

strains in the ice. However, it may be that a simple model useful in signal detec-

o4 tion can adequately describe these tones.

Another area of interest is in signal detection. Knowledge of the noise can
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suggest useful methods of signal detection. There are a variety of approaches --

for example, one might derive theoretical results which can be tested by adding

signal to the noise data. This might best be done in conjunction with more com-

plete modeling Another interesting approach would be to compare the

efectiveness of existing detection schemes in the presence of this noise. .0 i

I -

.0

I,-0

0 .9
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Appendix A

The aim of this appendix is to give the technical results used in the paper.

These are given in Theorem 2 and its Corollary.

Suppose that we observe 0

X, X + Yj, i= 1, 2,..... N, )

where X is Gaussian with non-normalized spectral density h(;)), positive for all

w, and Yl is a mixture of sinusoids at I discrete frequencies 17jj with amplitudes -*

}AJ and arbitrary phase shifts (i = 1, 2.I). Assume that X is a linear pro-

cess

X= : -f (2)

where the Et are independent and Gaussian, E(tg) = 0, E(e) = 1, and the f are

constants satisfying the condition

t cfl' < (3)

for some c > 0. Condition (3) implies that the spectral density h is continuous

and bounded on '0,ir]. Lastly, assume h(w) > 0, for all r.)..

Form the standard periodogram of Z, at Fourier frequencies W'N = 2ij/N,

0 < j < NI 2 (we ignore the end points 0, NI 2 so that Theorem I holds true). So

PN (WJN) 27 '-/ N ' , 1- Z - , .' (4) _

We need two preliminary results- the first is a lemma due to Hoeffdin g

(1963):

lemma I

Let W, i=:. 2 ... , m be independent random variables bounded between zero

and one. Then, for each t > 0,

P[ 2 , E(,) L-mt]! -2M

Li l ( !"
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The second result is due to Walker (1965) and concerns the asymptotic

independence of PN(CjN) for different Fourier frequencies:

Theorem 1

Let X be given by (2) and satisfy (3). Then:

P'V( NV) = Vjv +R,(',%N) (5)

where the VN are independent, each with distribution 1 (Notice the
2

Fourier frequencies do not include 0, NI 2). )

Further:

ma fRN (cj)~ =Op(: (6)

Under these conditions we prove that the running median estimate of h

converges uniformly in probability by proving the following theorem.

Theorem 2

Let Zt be a process as given in (1), satisfying condition (3). Let n be an integer

depending on N such that as N-, the following holds:

w--- 0 as N -
(7)

and there exists a 7 > - so that:

~-*ccas No (8)

and assume h bounded away from zero.

Given w, let jwj. j be the set of m wjN's nearest to w (mod r,). Let

hIIN(W) = median of JPv(wj-)/log(2)j (9)

Let e > 0 be given. Then, as N--,

P[supjh.(w)-h(.)! > r] -. 0 (10)

Proof

First note that PN(wjN) are approximately distributed as N independent

-h(WjN).XI, (i.e. exponentials with parameter h(wjN)-I), but with a fixed
2IL
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constant added, g (wji'), where

g( ) = 2F + : ) (:-:)
gM =1

where the A's and pi's come from the discrete frequencies assumed in the

theorem and F, is a Fejer kernel;

1 sin 2(Ni,/2) (12)

FN(15) 2iN sin(i/ 2)

Given the decomposition in Theorem 1, we know the distribution functions of V-,

say they are given by GN. For simplicity in the following argument, let us

further suppose 1=1. The case of 1>1 is proved along the same lines, except for

increased notation. Fix an wo. Let the median of an exponential, parameter

h(wo) - I, be given by:

to = log(2).h(wc)

Let C.N'(c.) = log(2).h,,,N(wo). We shall abuse notation by dropping the argument

to , when it is clear to which :o we are referring. Then CN' is an estimate of

*0, the median of an exponential, parameter h(u0 ). We shall work with CC and the

estimate Cr N', so without loss of generality. replace t by e.iog(2) in the state-

ment of this theorem.

Make the decomposition (5). We work first with the case of considering

.v'wc) = the median of VfA and extend to .mN later. Again, we drop the argu-

ment to *,,vv if it is clear which argument is implicitly referred to. So:

PL C*mN '-C > E] P[ CnN > 4c + e] + Pe CN < Co - ](3)

Let

I+ S= '+ "

Then

. > a] = P[ Lor more PN(,) > a]

= U P[/P~j)>]

"-
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< exp )2(:L(G,,(c)- .0

= exp(-2m 62)

by Lemma 1, where

We now show for m, N large enough

6 !62 > 0

Put L = maxlh(:)-.;w in E0,2tT)J. L exist by the assumption h is positive. As

maximum of h is bounded, put M = minjh'w)'I, and for N large enough,

Aj/ N < f for all w

So a.sume this holds. Also:

AjFN(rjN-rD) > h(wjv)- l for at most kN, of the )jpi

We c.an choose kN to satisfy A- - 0. where kjv comes from consideration of the

form of the Feler kernel, which is bounded by O(N/k§ ), for the N-k Fourier

points farthest from 9.

Simultaneously, we can choose kyv to satisfy _--, 0. by considering condition
m

(8); e.g choose kv = N, where -< " <7

So, for at most kN points, r+e-9 (c.,) < 0. So:

6Mf

except for at most kN up

= -expl-h y'+h(w 1 hc. -]+h(f' (..) (15)2rn -

except for at most kN w.. We use now uniform continuity of h - I and the fact -0-

m/N - to note that for n large enough,

- ----
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Ih(Y)- -h~ 1 jc~e< 
- -o

"0

if -we < r/N. So (15) >

- exp(-L e + rto + MA/N)
&M 2m

where we have dealt with the "at most kv w.-'s" by bounding any exceptional

term Gj' ot)- 1-from below by -1/ 2.

e vkN

for m, N large enough, recalling 0 0. It is clear that this bound does not
m

depend on we. So we have proved

P[tmjN > to + leg e

for 7n, N large enough. We prove an exactly similar bound on the second term

in the right side of (13). Let 61 be the minimum of the two 50 's. Hence

P[,v-o' > e] <!r-2e (16)

Now we bound the effect of including Rv(cN):

UP ,.1v'(c.AW) oI > e] = " su I -'(WN)-j > E]

(where tj = log(2).h (wjN))

0<$< /2 -

O<j <V/ 2-.

+ Pr S&/2 ! RN(wjN) . > e/ 2] (17)

The second term of the (17) is op(1) by (6). We show that the first term is also

o,(1). But by applying (16),

su -z~)t2,62I
O<J /2 2~

(by applying Lemma 1 and sub-additivity of probability measures)

=exp(-2rn 62 +logN)

-. 0 if -- , ac
logN
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This is implied by condition (5), so we are done.

We have an immediate corollary to Theorem .:

Corollary 1

Let .

Vy =1 h.(N)

and let

V = fh (w)d w = var(X)
Then, given t > 0, and under the assumptions of Theorem A,

PHVmN-V; > ]- 0

asN - . .

Proof

The proof is immediate on considering the result of the theorem and recalling

that h is uniformly continuous.

='I

* 42
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